

Expanding JavaScript’s Metaobject Protocol

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Computer Science

By

Tom Austin

December 2007

 ii

© 2007

Tom Austin

ALL RIGHTS RESERVED

 iii

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Cay Horstmann

Dr. Mark Stamp

Dr. Chris Tseng

APPROVED FOR THE UNIVERSITY

 iv

ABSTRACT

EXPANDING JAVASCRIPT’S METAOBJECT PROTOCOL

by Tom Ausin

A metaobject protocol (MOP) can add a great deal of flexibility to a language. Because
of JavaScript’s prototype-based design and the small number of language constructs, it is
possible to create a powerful MOP through relatively minimal changes to the language.
In this project, I explored JavaScript and Ruby's existing metaprogramming features. I
also created JOMP, the JavaScript One-metaclass Metaobject Protocol, which gives the
language much of the same power that Ruby has. Finally, I built a web development
framework with JSF and my modified version of Rhino JavaScript.

 v

TABLE OF CONTENTS

1 Introduction...1
2 Ruby..2

2.1 Object-oriented Design ...3
2.2 Type System...4
2.3 Ruby on Rails ...4
2.4 Metaprogramming ..5

3 JavaScript ..5
3.1 Rhino..6
3.2 Prototype-based Object Design ...6
3.3 First-class Functions ...6
3.4 Properties..7

4 Metaprogramming: Ruby vs. JavaScript ..7
4.1 Singleton Classes ..7
4.2 Eval Methods..8
4.3 Aliasing a Method...8
4.4 Callable Objects..9
4.5 Mix-ins ...9
4.6 Callbacks and Hooks ..10

5 JavaScript Metaobject Protocol Proposal ...11
5.1 Mix-ins ...12
5.2 The __metaobject__ Property ...13

5.2.1 Looking Up the Metaobject in the Prototype Chain.14
5.2.2 Creating a Separate Metaobject ..14
5.2.3 One Metaclass..14

5.3 Applications of the New Extensions..15
5.3.1 Getter and Setter Basics ...15
5.3.2 Tracing...16
5.3.3 Security Applications ...18
5.3.4 Advanced Metaprogramming ...19
5.3.5 Multiple Inheritance...20

6 RhinoFaces..24
6.1 JavaServer Faces...24
6.2 Reduced Configuration ...24
6.3 Flash Scope ..26
6.4 Simplified Database Access ..27

6.4.1 Associations...27
6.4.2 Advanced find methods..29

6.5 MobileMusic ..30
6.5.1 Features ...30
6.5.2 Security..31

 vi

7 Related Work ..32
7.1 Mozilla JavaScript Getters and Setters ..32
7.2 Java 6 JS...33
7.3 PHP 5 Comparison ...34

8 Conclusion ..35
References...37

TABLE OF FIGURES

Figure 1: MobileMusic Homepage ..30
Figure 2: Admin View of Pending Orders..31
Figure 3: Non-Admin View of Pending Orders..32

1 Introduction
JavaScript has been a much maligned programming language. Browser incompatibilities,
poor implementations, and some superficial flaws in its design have led to numerous
headaches for developers, and for a long time, it was seen as an evil to be avoided.

All of this belies the fact that JavaScript is a very powerful language. It has support for
closures, functional programming, and metaprogramming. In fact, it offers many of the
same features that have made Ruby popular in recent years.

More importantly, JavaScript might be a better scripting language choice for Java
programmers. Much of JavaScript’s syntax and conventions follows those of Java.
Furthermore, it boasts a strong, robust JVM implementation in Netscape/Mozilla’s
Rhino.

However, JavaScript has only a somewhat limited metaobject protocol (MOP).
Expanding this could be a powerful addition to the language. This might also help to
make JavaScript a viable server-side language. Ruby on Rails makes extensive use of
some of these metaprogramming techniques, particularly in its ActiveRecord
object-relational tool.

Metaprogramming and Metaobject Protocols are so closely tied together that I'll slip back
and forth between them throughout this paper. However, it is worthwhile to point out the
differences between these two concepts.

Metaprogramming, simply put, is the writing of programs that can write and modify other
programs. A metaobject protocol is a refinement of metaprogramming focused on
objects within these languages. The authors of [9] use this definition:

Metaobject protocols are interfaces to the language that give users the ability to incrementally modify
the language’s behavior and implementation, as well as the ability to write programs within the
language.

In other words, a metaobject protocol allows us to modify the way that the constructs of
the language behave. The Common Lisp Object System (CLOS) is the most famous
example of a metaobject protocol, and is often cited as the archetype for these systems in
general.

Metaobject protocols have numerous applications, including persistence [11,13], pre/post
conditions [14], tool support [5], and security [21], among others. Although CLOS is the
most renowned metaobject protocol, other systems exist for different languages.
Smalltalk, Ruby, and Groovy all include at least partial metaobject protocols, and several
models have been proposed for Java [16].

Traditionally, metaobject protocol research has been focused on class based

 2

object-oriented systems. While class-based design is the more common approach, it is
not the only one.

JavaScript instead relies on prototypes. Prototype-based object systems instead define a
prototype object. New objects are created by cloning the prototype. This is an inherently
more flexible system. It is easy to modify the behavior of a single object or a whole
group of objects at runtime. In contrast, this is something that most class-based
object-oriented languages cannot do. Interestingly, Ruby does have some
metaprogramming features than can achieve some of the functionality usually reserved
for languages with prototype-based object systems.

2 Ruby
Ruby has gained fame as a well designed, flexible, and powerful scripting language. It is
usually described as a combination of Smalltalk and Perl, or Java and Perl for those
without Smalltalk experience. The creator of Ruby is Yukihiro Matsumoto, more
commonly known within the Ruby community as simply “Matz”. In his own description
of Ruby he attributes much of the design to Lisp as well [12]:

Ruby is a language designed in the following steps:
• take a simple lisp language (like one prior to CL).
• remove macros, s-expression.
• add simple object system (much simpler than CLOS).
• add blocks, inspired by higher order functions.
• add methods found in Smalltalk.
• add functionality found in Perl (in OO way).

While Ruby and Lisp have very little superficial resemblance to one another, some of
Ruby's features do illustrate the influence. One example is implicit returns; in Ruby,
every statement is an expression. The return statement still exists, but with the exception
of early returns, its use is mostly a matter of taste.

Ruby's alleged similarity to Lisp has been a highly contentious issue. Two blog posts in
particular managed to stir up a heated debate: Eric Kidd's “Why Ruby is an acceptable
LISP” and Steve Yegge's follow up “Lisp is not an acceptable Lisp”. The central point of
both articles was that Ruby has much of the same flexibility and is much more practical
for daily programming tasks. The comments on these articles ranged greatly in their
opinions. Steve Yegge himself commented on this [19]:

[Eric Kidd's article] got approximately 6.02e23 comments, ranging from "I agree!" through "I hate
you!" to "I bred them together to create a monster!" Any time the comment thread becomes huge
enough to exhibit emergent behavior, up to and including spawning new species of monsters, you
know you've touched a nerve.

Regardless of Ruby's background, it has established a reputation as a cleanly designed
and user-friendly scripting language. While it is not without its critics, its popularity is
clearly on the rise.

 3

In this section I'll highlight some specific features of Ruby's design.

2.1 Object-oriented Design
In Ruby, everything is an object. Unlike Java (and JavaScript for that matter), there is no
split between primitives and objects. As a result, '1.to_s()' is a valid statement. This
leads to a simpler model, since programmers do not have to worry about this dichotomy
between primitives and objects.

Ruby, like most object-oriented languages, uses a class-based system. It only supports
single inheritance, but has the concept of “mix-ins”. Mix-ins are modules that can be
included in other classes in order to add functionality. Comparable and Enumerable are
two examples of this. These serve in much the same role as interfaces do in Java, with
the obvious benefit that they add actual functionality, instead of just obligations. (They
do add in obligations as well -- the added methods typically make use of other methods
that must be defined in the class. For example, Comparable requires that the <=>
operator has been defined).

One notable distinction of Ruby's class system is that all classes are open. While this
seems rife with possibilities for abuse by creative programmers, it does give a great
degree of flexibility. Here is an example adding the car/cdr functions from Lisp to Ruby
Arrays:

class Array
 # Returns the head element
 def car
 first
 end
 # Returns the tail
 def cdr
 slice(1,length)
 end
 def to_s
 s = "[" + car.to_s
 self.cdr.each do |elem|
 s += ", " + elem.to_s
 end
 s += "]"
 end
end
list = [1, 2, 3, 4]
puts list.car # prints 1
puts list.cdr.to_s # prints [2, 3, 4]

I'll leave it to the reader to decide whether this is an example of why classes should be
open or should not be open.

 4

Both mix-ins and the open nature of Ruby's classes are important for metaprogramming,
so we will revisit these again later.

2.2 Type System
Ruby is dynamically typed, but not weakly typed. Although programmers do not need to
specify the type of a new object, they may be required to convert it before some
operations. For instance, here is an attempt to mix a String and an Integer in Ruby:

irb(main):002:0> "32" + 1
TypeError: can't convert Fixnum into String
 from (irb):2:in `+'
 from (irb):2

Instead, the type conversion must be manually specified. Either way will work:

irb(main):003:0> "32".to_i + 1
=> 33
irb(main):004:0> "32" + 1.to_s
=> "321"

In contrast, here is Rhino JavaScript:

js> 32 + "1"
321
js> "32" + 1
321

2.3 Ruby on Rails
It has been argued that every new language needs a popular application to bring it to the
world's attention [17]. For Ruby, this has been the web development framework “Ruby
on Rails”. Rails has built-in facilities for testing, a clean division of the
model/view/controller pieces, and a friendly object-relational tool named ActiveRecord.
Rails advocates claim it offers a great boost in developer productivity.

A major axiom of Ruby on Rails is “Don't Repeat Yourself”, often simply referred to as
the DRY principle. To achieve this, Rails makes heavy use of default settings. The
philosophy of “convention over configuration” means that there is very little
configuration in a typical Rails application. While Rails does provide the ability to
override the defaults, this is generally done only for legacy applications.

ActiveRecord is arguably the core to Rails. It greatly eases interacting with the database,
which is a key part of many web applications. It also makes use of “convention over
configuration” more than any other single piece of the framework.

Here are two examples of ActiveRecord classes. The names of the database tables, the
field to uniquely identify each record, and the foreign key to relate the objects is all

 5

determined by default values:

In album.rb
class Album < ActiveRecord::Base
 belongs_to :artist
 has_many :songs
end
In artist.rb
class Artist < ActiveRecord::Base
 has_many :albums
end

Setters and getters are added automatically to the language. As a result, the programmer
could then write a script like the following:

mark_growden = Artist.new
mark_growden.name = "Mark Growden"
live_at_the_odeon = Album.new
live_at_the_odeon.artist = mark_growden
live_at_the_odeon.title = "Live at the Odeon"
live_at_the_odeon.save()

This would save both objects into the database, since ActiveRecord is aware of their
relationship.

2.4 Metaprogramming
Ruby has many powerful tools for metaprogramming. Many of these also exist in
JavaScript; some do not. These will be discussed in more detail later. The important
point to note here is that Ruby's metaprogramming features are a key part of Ruby on
Rails and ActiveRecord. Eric Kidd has argued that these offer nearly as much power as
Lisp’s macros do [10]:

The real test of any macro-like functionality is how often it gets used to build mini-languages. And
Ruby scores well here: In addition to Rails, there’s Rake (for writing Makefiles), Needle (for
connecting components), OptionParser (for parsing command-line options), DL (for talking to C
APIs), and countless others. Ruby programmers write everything in Ruby.

3 JavaScript
JavaScript is a study in contrasts. It has many ugly, superficial quirks. At the same time,
it has a surprisingly elegant core design. On the surface, it has a syntax that seems to be a
deliberate clone of Java, but its prototype-based design and its first-class functions are
alien concepts to the Java world. It has been regarded as a toy language, and yet it has
powered many recent, beloved AJAX applications.

Douglas Crockford offers one of the most concise descriptions [4]:

JavaScript is a sloppy language, but inside it there is an elegant, better language.

 6

3.1 Rhino
Netscape/Mozilla's Rhino is consistently rated as one of the best JVM scripting
languages. In addition to adding in tools to script Java, Rhino also includes a number of
additional functions that make up for shortcomings in the language’s basic design.

As a result, developers have begun to bring JavaScript outside of the browser. Two
notable applications that use Rhino are HttpUnit and Phobos. HttpUnit is a tool that can
be combined with JUnit to facilitate testing page flow for web applications. Phobos is a
Rails-inspired web development framework.

A version of Rhino is now included in Java 6, and Google is developing a “Rhino on
Rails” web development framework. As Dave Thomas discusses, work by Sun and
Google paint a bright future for JavaScript on the JVM [18].

3.2 Prototype-based Object Design
JavaScript is the most widely used prototype-based programming language. While this is
an unfamiliar model to most programmers, it is a surprisingly flexible and powerful one.
Also, every JavaScript object is a collection of properties. The combination of these two
characteristics means that there are very few points that need to be considered when
designing a metaobject protocol.

JavaScript borrowed much of it core design philosophy from Self. The designers of Self
discussed the advantages of prototype-based object-oriented languages over the more
traditional class-based approach [20]:

Class-based systems are designed for situations where there are many objects with the same behavior.
There is no linguistic support for an object to possess its own unique behavior, and it is awkward to
create a class that is guaranteed to have only one instance. SELF [because of its prototype-based
system] suffers from neither of these disadvantages.

3.3 First-class Functions
JavaScript functions are first class citizens. They can be passed as arguments, returned
from other functions, or stored as properties. Functions are also closures. David
Flanagan discusses this in his authoritative reference book on JavaScript [8]:

The fact that JavaScript allows nested functions, allows functions to be used as data, and uses lexical
scoping interact to create surprising and powerful effects.

Throughout his book, Flanagan demonstrates multiple uses for this feature of the
language. It can be used to create private namespaces, set breakpoints, and create unique
number generators.

When Brendan Eich created JavaScript, he originally wanted to create a dialect of
Scheme [3]. Though it superficially more resembles Java and C, its first class functions
and simple, elegant design show these roots.

 7

3.4 Properties
JavaScript also borrowed its handling of properties from Self. In Self, they are called
‘slots’ and can hold any value, including functions [20]. Partially as a result of this
design, JavaScript can easily mimic many of Ruby's metaprogramming features.

However, properties are intrinsically public. This is often undesirable, and it makes it
difficult to intercept calls to set or get properties. While nested functions can be used to
create getters and setters for private data, this is not the JavaScript way. It breaks with
the conventions of the language and loses much of the power and flexibility that
JavaScript's design offers. This will be one major issue that will be addressed with the
proposed extensions.

4 Metaprogramming: Ruby vs. JavaScript
This section will focus on the metaprogramming features within Ruby and the equivalent
features within JavaScript. David Black's “Ruby For Rails” covers most of these features
in great detail [1]. Outside of digging through the source code for Rails, this was the
primary reference for this section.

4.1 Singleton Classes
Singleton classes are used to add methods or attributes to individual objects rather than to
classes. Ruby's syntax allows the programmer to either define individual methods of the
singleton class, or to open the singleton class and add methods or variables that way. I'll
show an example of the former first, since its syntax is easier to follow:

greeting = "Hello"
bob = "Bob"
def greeting.say_twice
 puts self
 puts self
end
greeting.say_twice # This will print "Hello" twice
bob.say_twice # This will throw a NoMethodError

Rails uses this technique in its DRb (Distributed Ruby -- one of the several options for
storing session information) server setup for ActionController. With this technique,
access to the session_hash is synchronized. They use the alternate syntax of class
<<obj since they are adding several methods to the class at once. Here is an excerpt:

session_hash.instance_eval { @mutex = Mutex.new }
class <<session_hash
 def []=(key, value)
 @mutex.synchronize do
 super(key, value)
 end
 # More methods omitted
 end

 8

end

For JavaScript, this is nothing special. JavaScript's prototype-based design inherently
provides the same functionality. For instance, the JavaScript equivalent of the say_twice
method would be the following:

var greeting = new String("Hello");
var bob = new String("Bob");
greeting.sayTwice = function() {
 print(this);
 print(this);
}
greeting.sayTwice(); // This will print "Hello" twice
bob.sayTwice(); // This will throw an Exception

The code is not any shorter, but its syntax is arguably cleaner. Ruby's singleton classes
seem like a bolted-on measure to emulate prototypes.

4.2 Eval Methods
This is one of the most powerful metaprogramming features in Ruby. It allows the
execution of arbitrary strings as Ruby commands. There are 4 different eval functions:

• eval()
• instance_eval()
• class_eval()
• module_eval()

Eval is the most basic and most powerful. Also, it is the most dangerous. Probably for
this reason, it does not seem to be used much in Rails.

The other 3 eval methods are more often used. They differ from the basic eval in that
they can also accept blocks of code, meaning that they can be used with much less risk.

The main purpose for instance_eval() is to gain access to the private members of another
class. The class_eval()/module_eval() methods are designed to add to the functionality of
a class or module and to include variables from the current scope. Together, all 3 of
these serve to allow the programmer to inject functionality into another class.

JavaScript has the same basic eval() function. The apply() and call() methods of
Function generally fill the same role as the other versions. Because of the elegance of
JavaScript’s prototype design, fewer MOP tools are needed. This proves to be a
recurring theme when comparing metaprogramming in these two languages.

4.3 Aliasing a Method
This is heavily used in ActiveRecord, and seems to be one of the core pieces of the
design in Rails. The 2 methods used primarily in this are alias_method and (to a lesser

 9

extent) define_method. These are used in tandem to create a wrapper around methods.

The method is aliased to a new name, and the original method name is overridden by the
wrapper method. In Rails, this is often used to change the functionality of a method.
For example, ActionController uses these methods to change what happens when
page.render() is called.

This is nothing exciting for JavaScript. Moving around methods is easy since they are
just functions stored as properties. We will take heavy advantage of this fact when
designing the new metaobject protocol for JavaScript.

4.4 Callable Objects
Proc, block, and lambda are collectively referred to as 'callable objects'. All three are
variations of the same idea -- they are ways to define temporary pieces of executable
code. Javascript can already create anonymous functions, so there is little that it is
missing.

Ruby has method, which returns a reference to the named method. This is mostly needed
because of the blurred line between properties and method calls in Ruby. JavaScript does
not have this issue. music.method(:play) in Ruby would translate to just music.play
in JavaScript.

Often used along with method are bind and unbind. Together, these can be used to
allow method references to be moved around between objects. The need for this is
unclear, and Rails seems to make little use of this feature. In fact, in his discussion on the
subject, David Black suggests that if you are using this, you most likely have a problem
in your design [1]:

This is an example of a Ruby technique with a paradoxical status: It's within the real of things you
should understand, as someone gaining mastery of Ruby's dynamics; but it's outside the realm of
anything you should probably be doing.

JavaScript does all of this already. Its functions seem to be more powerful and flexible.
They can have properties of their own (which is not true for Ruby methods), they can be
passed as arguments, and they can be bound and unbound at will. Ruby's methods are
close, but they are not quite as flexible, which seems to require this extra complexity to
achieve the same results.

4.5 Mix-ins
As discussed before, mix-ins are used in Ruby in place of multiple inheritance. They are
ways of adding a chunk of functionality to another class. JavaScript has no built in
function to do this, though it is easily mimicked. In section 9.6 of his book, Flanagan
provides a 6-line method to achieve this [8]. Again, the combination of properties and
first class functions provide JavaScript with the power that it needs.

 10

4.6 Callbacks and Hooks
Ruby has several different points where a programmer can hook in to the application.
They are:

• Module#method_missing
• Module#included
• Class#inherited
• Module#const_missing

Of these, const_missing is used the least. It does not seem to be particularly important.
David Black suggests that it could be useful for giving default values to uninitialized
constants, but why constants would need default values is a little unclear.

In contrast, method_missing is used frequently. It helps to create shortcuts and more
intuitive APIs. ActiveRecord uses this to allow calls like
Employee.find_by_last_name("Austin"). Behind the scenes, method_missing
converts this to Employee.find(:first, :last_name => "Austin").

We could use method_missing to extend the earlier Lisp-like additions to the Array class:

class Array
 # This will give more advanced list functions, like cadar or caar.
 # However, unlike in Lisp, there will be no limit to the available
 # methods. 'caadaaddadaadaaddadr' could be called if the
 # programmer so decided (and had a really sick sense of humor).
 def method_missing(method_called, *args, &block)
 meth_name = method_called.to_s
 if meth_name =~ /^c(a|d)+r$/
 list = self
 meth_name.reverse.scan(/./).each do |op|
 if op == 'a'
 list = list.car
 elsif op == 'd'
 list = list.cdr
 end
 end
 return list
 else
 super(method_called, *args, &block)
 end
 end
end
list = [[0, [1, 2], 3], 4]
puts list.caadar #prints 1

While method_missing can create friendlier APIs, it does not seem to offer any extra
programming power in Ruby. However, when combined with JavaScript's
prototype-based object design, it does suggest some interesting possibilities. For one,
this might be a technique for creating multiple inheritance. If a method did not exist in

 11

one prototype chain, a second prototype chain could be searched.

Method_missing has proven to be particularly popular, and it has been copied by multiple
languages. Most importantly, the latest version of Rhino JavaScript has added a
__noSuchMethod__ function that operates exactly like method_missing, though this is
not part of the ECMAScript specification. However, since property references in
JavaScript are not the same as method calls, this does not offer the full power of Ruby’s
method_missing.

The included and inherited methods seem to be the core of Ruby metaprogramming, at
least for how it is applied in Rails. This is used heavily in ActiveRecord and even more
so in ActionController. Here is an example from the base ActionController class:

module Layout
 def self.included(base)
 base.extend(ClassMethods)
 base.class_eval do
 alias_method :render_with_no_layout, :render
 alias_method :render, :render_with_a_layout
 class << self
 alias_method :inherited_without_layout, :inherited
 alias_method :inherited, :inherited_with_layout
 end
 end
 end
 # ... Rest omitted

When the Layout module is included, it rewires the render method of the host object so
that it will use the layout. It also changes the behavior of the inherited method.

JavaScript does not seem able to compete here. It has no real equivalent to the
included/inherited methods, and no standard equivalent to method_missing. Fortunately,
JavaScript's design makes it easy to cover all of these by intercepting a couple of points.

Setting new properties in JavaScript covers both inclusion of other modules and
inheritance (via the prototype chains). By intercepting the getting of properties from an
object, method_missing and const_missing could both be mimicked as well. If a
mechanism can be created for intercepting the setting and getting of properties,
JavaScript's metaprogramming features could become every bit as powerful as those of
Ruby.

5 JavaScript Metaobject Protocol Proposal
JavaScript's power can be greatly increased by adding callbacks and hooks to the
language. Fortunately, since JavaScript makes heavy use of properties, we can add most
of our hooks at a single point.

 12

JavaScript has only two constructs that we need to consider: objects and functions.
Because JavaScript has no classes, this is all that we really need to consider. In contrast,
Ruby has Object, Method, Class, and Module metaclasses to deal with among others.

As it turns out, we can add the additional power we need with Object alone. All
functions are properties of some object. Therefore, we can create a wrapper function and
return that whenever a function is requested. Even top-level functions are properties of
the global object [6].

In this section, I’ll outline JOMP – the JavaScript One-metaclass Metaobject Protocol.

5.1 Mix-ins
JavaScript can mimic this already, though it is not built in to the language. We can fix
this by adding these methods to Object:

• addMixIn(mixIn)
• mixedIn(recipient) – not automatically added, but reserved by convention.

The addMixIn method is just a modification of David Flanagan’s version. It is done in a
more object-oriented manner and with a callback mechanism added:

Object.prototype.addMixIn = function(mixIn) {
 var from = mixIn;
 var to = this.prototype;

 for (method in from) {
 if (from.hasOwnProperty(method)) {
 if (typeof from[method] !== "function") continue;
 if (method === "addMixIn" ||method === "mixedIn") continue;
 to[method] = from[method];
 }
 }
 // If the mix-in object has a mixedIn method, it will be called.
 // This emulates Ruby's Module#Included callback method.
 if (mixIn.mixedIn) {
 mixIn.mixedIn(this);
 }
}

Whenever a mix-in is added to another module, the recipient checks the mix-in for a
mixedIn() method. If it finds one, it calls that method and passes itself as the object.
This also illustrates how we could track clones of a prototype, although we will need a
mechanism to track their creation.

Here is an example mix-in. In this case, we are again adding car/cdr functionality to
Arrays, but we are doing it as a mix-in instead:

function LispListMixIn() {
 this.mixedIn = function(receiver) {

 13

 var recvMatch = receiver.toString().match(/function (.*?)\(/);
 var recvName = recvMatch ? recvMatch[1] : "primitive";
 print("Adding Lisp functionality to " + recvName);
 }
 this.car = function() {
 return this[0];
 }
 this.cdr = function() {
 return this.slice(1);
 }
}
Array.addMixIn(new LispListMixIn());

var numbers = [1,2,3];
print(numbers.cdr().car()); //This will print 2

5.2 The __metaobject__ Property
With JOMP, every object in the language may have a __metaobject__ property. If this
does not exist, the object will behave normally. However, if this property is specified, its
methods may alter the behavior of the object.

A __metaobject__ can specify any or all of these methods:

• has(thisObj,property)
• get(thisObj,property)
• set(thisObj,property,value)
• remove(thisObj,property)
• getIds(thisObj)
• hasInstanceOf(thisObj,instance)

The first argument of all of these methods is the object itself. The second argument for
has, get, set, and remove is the name of the property. For the set method, the last
value is the value being given to the specified property.

Each of these methods corresponds to a different action; has is called when testing for
the existence of a property, get is called when attempting to retrieve the value for that
property, set is called when attempting to set it, and remove is called when the delete
command is used on a property.

The return value for these actions, if there is one, will be the return value for the method
call. For instance, if foo.bar is called, the value will be the result of calling
foo.__metaobject__.get(foo,'bar'). The other methods follow the same pattern.

The hasInstanceOf method works differently than the others in that it is usually part of
the prototype’s metaobject. This is called whenever the instanceof operator is used.
The first argument is the prototype and the second is the instance. So, joe instanceof

 14

Employee will result in a call to Employee.__metaobject__.hasInstanceOf(joe), if
the Employee’s __metaobject__ property contains that method.

If __metaobject__ does not define any of these methods, its corresponding behavior will
not be altered.

5.2.1 Looking Up the Metaobject in the Prototype Chain.
The __metaobject__ does not have to be part of the object in question. It can be looked
up in the prototype chain just like any other property.

This is a key point. Because of this feature, modifying the behavior of objects can be as
granular as needed. A single object can be given its own behavior, or
Object.prototype.__metaobject__ can be set, in which case the behavior of every
object will be changed.

5.2.2 Creating a Separate Metaobject
One unusual aspect of this design is that a separate __metaobject__ is defined. A
different and perhaps more obvious approach would have been to add __has__, __get__,
__set__, and __remove__ properties to the Object prototype. This is, in fact, the
approach that Ruby has taken in the design of its MOP.

However, the advantage to JOMP’s design is that the behavioral rules can be contained in
a single object. For instance, we could create a tracingMO object that simply printed
whenever any of its methods were called. Tracing an object would then simply become a
matter of setting its __metaobject__ property to tracingMO.

This could still be achieved with separate methods, but it becomes more complicated.
The __metaobject__ property approach gives an easy way to contain the behavioral rules
in s single package.

5.2.3 One Metaclass
One noticeable difference in the design of JOMP is that it has no real metaclasses. In
most MOPs, metaclasses are the principle means of organizing the different metaobjects.
It would seem odd to have metaclasses in a language without classes, but that was not the
reason for the omission.

As JOMP’s name indicates, we only needed a metaclass for objects. With only one
construct, the concept of a metaclass is not a particularly useful one.

If JOMP were extended to add MOP features that were specific to functions, or to include
support for primitives and operators, metaclasses might become needed. However, this
would probably need a metaprototype, or some other construct more fitting with the
prototype design philosophy.

 15

5.3 Applications of the New Extensions
The new extensions allow JavaScript to do many things that have not been possible
before. In this section, we will cover a few examples.

5.3.1 Getter and Setter Basics
In Java and other languages, you intercept properties by using a setter and getter.
However, the key difference here is that we may decide to change the behavior at
runtime, something that many languages cannot do easily.

For a simple example, let's create a new employee:

function Employee(firstName, lastName, salary) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.salary = salary;
}

var t = new Employee('Tom', 'Austin', 1000000);
print(t.firstName + " " + t.lastName + " $" + t.salary);

After creating this employee, we may want to prevent the salary field from being changed
accidentally. To do this, we can change the rules for setting the salary property:

//Now we want to make salary read only
var mop = {};
mop.set = function(thisObj,prop,value) {
 if (prop == 'salary') {
 throw new Error('Warning: Salary is a read-only property');
 }
 thisObj[prop]=value;
}
t.__metaobject__ = mop;

After this, any attempt to change the salary will not work.

//This will print an error and the salary will not be changed.
try {
 t.salary = 999999;
}
catch (e) {
 print(e);
}

Over time, the definition for a field might change. For example, salary could include a
bonus, but you might still want salary to refer to the total salary. With a change to the
object's behavior, this is easily done:

//Change salary to use baseSalary and bonusPay
t.baseSalary = 1000000;

 16

t.bonusPay = 500;
t.__metaobject__.get = function(thisObj,prop) {
 if (prop == 'salary') {
 return thisObj.baseSalary + thisObj.bonusPay;
 }
 else return thisObj[prop];
}

Although we have not used JOMP for anything greatly original so far, these examples do
show how some basic changes to the language can be useful.

5.3.2 Tracing
Logging is a common use-case given for metaobject protocols. Often you would like to
trace an object's behavior for troubleshooting. One common method is to insert print
statements, but this clutters up the code. More importantly, it might clutter up the logs as
well, making it harder for you to spot the problem.

Metaobject protocols offer a good solution to this. The code to an object can be left
unchanged, but you can modify its behavior to report back detailed messages.

An important point here is that the object's behavior can be changed on the fly, so you
can limit the verbose logging to only a portion of the code. Also, you can alter the
behavior of only a given object or a whole group of objects just as easily.

Here is an example function that will trace an object's behavior:

function traceObject(o, objName) {
 var oldMo = o.__metaobject__;
 var tracingMO = {};

 // This function can be used to disable a tracing routine.
 tracingMO.stopTrace = function() {
 o.__metaobject__ = oldMo;
 }

 // Logs the getting of properties. Functions returned
 // will print their property
 tracingMO.get = function(thisObj,prop) {
 logMessage("***Getting " + prop + " from " + objName);

 var returnVal = thisObj[prop];
 if (oldMo) returnVal = oldMo.get(thisObj,prop);

 //We'll wrap functions so that we know when they are called.
 if ((typeof returnVal) == "function") {
 var wrapFunct = function() {
 var msg = "***Calling " + prop + " with args:";
 for (var i=0; i<arguments.length; i++) {
 msg += " " + arguments[i];

 17

 }
 logMessage(msg);
 returnVal.apply(thisObj, arguments);
 }
 return wrapFunct;
 }
 else return returnVal;
 }

 // Logs the setting of properties
 tracingMO.set = function(thisObj,prop,value) {
 logMessage("***Setting " + objName + "'s " + prop

+ " to '" + value + "'");

 if (oldMo) oldMo.set(thisObj,prop,value);
 else thisObj[prop] = value;
 }
 o.__metaobject__ = tracingMO;
}

There are a few key points to note in this example. First of all, the original object might
have its own __metaobject__. We don't want to lose that, so we must wrap the tracing
functions around the original. Also, since the original might not have a __metaobject__
specified, we have to consider that case as well.

We want to be able to track when a function is called and with what arguments. To do
this, we can wrap the original function in a new one and return that on the fly.

This highlights a couple of the downsides to not having a __metafunction__ property as
well. First of all, constructing the new functions on the fly can be expensive. For
troubleshooting, that is probably acceptable.

Another, more subtle problem is that the new function can be treated as an object. It is
possible that it might be passed as an argument to another function, stored as a property
for another object, etc. At that point, the function is no longer under the control of the
tracing metaobject. Turning off the tracing behavior won't affect the new function.

These issues are relatively minor, but they are points to consider.

Here is an example using the earlier function:

var rincewind = {};
traceObject(rincewind, "Rincewind"); //Enables tracing

rincewind.hatName = "Wizzard";
rincewind.weapon = "sock & half-brick";
rincewind.attack = function(enemyName) {
 print("Hit " + enemyName + " with " + rincewind.weapon);

 18

}

rincewind.attack("Hell-Demon");
rincewind.weapon = "other sock & half-brick";
rincewind.attack("Nastier Hell-Demon");

Running this example would give very detailed logging:

***Setting Rincewind's hatName to 'Wizzard'
***Setting Rincewind's weapon to 'sock & half-brick'
***Setting Rincewind's attack to '
function (enemyName) {
 print("Hit " + enemyName + " with " + rincewind.weapon);
}
'
***Getting attack from Rincewind
***Calling attack with args: Hell-Demon
***Getting weapon from Rincewind
Hit Hell-Demon with sock & half-brick
***Setting Rincewind's weapon to 'other sock & half-brick'
***Getting attack from Rincewind
***Calling attack with args: Nastier Hell-Demon
***Getting weapon from Rincewind
Hit Nastier Hell-Demon with other sock & half-brick

However, after this, you might not care about the rest of the results. At this point, you
can disable tracing:

rincewind.__metaobject__.stopTrace();
rincewind.weapon = "turnip";
rincewind.attack("Evil Warlord");

The behavior is normal for this section, and much less verbose:

Hit Evil Warlord with turnip

This code is included in the RhinoFaces, the web development framework discussed in
chapter 7. It provides a useful tool for monitoring the behavior of an object, and it
proved invaluable for troubleshooting.

5.3.3 Security Applications
Another frequent use of MOPs is for security [21]. By intercepting the setting and
getting of all properties, it becomes a very simple matter to prevent all access to an
object.

By locking down an object in the constructor, the API designer can prevent developers
from accidentally giving access to restricted information. We’ll start with a simple
Employee example:

 19

function Employee(firstName, lastName, salary) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.salary = salary;

 //This variable temporarily allows us to modify variables.
 var authorized = true;

 var mop = {};
 //This will make all properties read only
 mop.set = function(thisObj, propertyName, newVal) {
 if (authorized || (typeof newVal) == 'function') {
 thisObj[propertyName] = newVal;
 }
 else print("Sorry, " + propertyName + " is read-only.");
 }
 //This will make all properties private
 mop.get = function(thisObj, propertyName) {
 if (authorized || (typeof thisObj[propertyName])=='function') {
 return thisObj[propertyName];
 }
 print("Sorry, " + propertyName + " is private.");
 return null;
 }

 this.__metaobject__ = mop;

 //The object is now locked down
 authorized = false;
}

This takes advantage of the fact that JavaScript functions are closures. The authorized
variable is private. After an employee has been created, the variable cannot be modified.
No user can then inadvertently modify an employee’s contents, or inadvertently display
information that should be secure.

The logic of Employee could be made more complex. One easy change would be to have
lock() and unlock() methods that would change the authorized variable.

5.3.4 Advanced Metaprogramming
JOMP can also be used to emulate more advanced metaprogramming techniques, like
Ruby’s method_missing idiom. Although it does not execute anything itself, it can create
a new function and return that. Here is an example mimicking the Ruby Lisp list
example:

Array.prototype.car = function() {
 return this[0];
}
Array.prototype.cdr = function() {
 return this.slice(1);

 20

}

var mop = {};
mop.get = function(thisObj,propName) {
 if (propName.match(/^c(a|d)(a|d)+r$/)) {
 var list = thisObj;
 return function() {
 var chars = propName.match(/a|d/g).reverse();
 for (var i=0; i<chars.length; i++) {
 var op = chars[i];
 if (op === 'a') {
 list = list.car();
 }
 else if (op === 'd') {
 list = list.cdr();
 }
 }
 return list;
 }
 }
 else return thisObj[propName];
}

var list = [[0, [1, 2], 3], 4];
list.__metaobject__ = mop;

The downside of this approach compared to Ruby’s method_missing or Rhino’s existing
__noSuchMethod__ is that it creates a new function object, which is slower. However,
with a little adjustment, we could make this newly created function a method of the
object, which would greatly speed future calls.

5.3.5 Multiple Inheritance
With JOMP, we can change some of the core features of JavaScript. For a good example
of this, we'll add multiple inheritance. To truly be multiple inheritance, we need to make
the following changes:

• An object should be able to inherit properties from multiple prototype chains.
• The instanceof operator should return true for any of the object's parents.
• Enumerating over an object's properties should return those from all of its parents.

These changes will require modifications to the behavior of both the object and its
prototype. To illustrate this, we'll create some prototypes for a role-playing game.

The game will have heroes, which are under the user’s control, and non-player characters
(NPCs), which will be controlled by the computer. NPCs are further divided into allies
and villains.

 21

The Hero and NPC definitions do not illustrate a great deal; Ally and Villain are more
central to the problem. These will both define a move method, but will have different
implementations.

function Ally(name, hitpoints, experience, xpValue) {
 NPC.call(this, name, hitpoints, experience, xpValue);
}
Ally.prototype = new NPC();
Ally.prototype.move = function() {
 print(" (" + this.name + "'s action: Help hero)");
}

function Villain(name, hitpoints, experience, xpValue) {
 NPC.call(this, name, hitpoints, experience, xpValue);
}
Villain.prototype = new NPC();
Villain.prototype.move = function() {
 print(" (" + this.name + "'s action: Attack hero)");
}

However, the game could use more classes than this. For instance, some characters
might be able to use magic. A Wizard definition might look like the following:

function Wizard() {};
Wizard.prototype.castSpell = function(spellName) {
 if (this.spells[spellName]) {
 var spell = this.spells[spellName];
 return spell();
 }
}

Unfortunately, we could have wizards that are heroes, villains, or allies. In Java, the
solution would be to create a Wizard interface, and then to have HeroWizard,
VillainWizard, and AllyWizard implementations. However, this could get increasingly
complex as more roles are added, and at some point a new approach would need to be
designed.

This tends to be less of an issue in most scripting languages. In JavaScript and Ruby, for
instance, we could add mix-ins to include all of the extra methods we needed for an
object. But there are two problems with this.

The first is that instanceof will not work as a means to identify an object's type. We
could work around this by adding a method to the prototype or to the objects themselves,
though this is not ideal.

A second problem is that the extra functions lose their association once they are mixed-in
to the object. As a result, it becomes difficult to cleanly remove them. This could be a
problem in some cases.

 22

Instead, we will change the behavior of these prototypes and their instances to allow for
an array of prototypes to be specified. All prototypes in the array will be treated as if
they were the object's prototype.

The object's behavior must be changed to use the array for both getting the ids and
looking up properties:

var objMop = {};
objMop.getIds = function(thisObj) {
 var ids = []
 for (var ind in thisObj) {
 ids.push(ind);
 }
 if (thisObj.__proto__ instanceof Array) {
 for (var ind in thisObj.__proto__) {
 var proto = thisObj[ind];
 if (proto) {
 for (var name in proto.prototype) {
 if (!ids[name]) ids.push(name);
 }
 }
 }
 }
 return ids;
}
objMop.get = function(thisObj,prop) {
 if (thisObj[prop]) return thisObj[prop];
 else if (thisObj.__proto__ instanceof Array) {
 for (var ind in thisObj.__proto__) {
 var proto = thisObj.__proto__[ind];
 if (proto.prototype[prop]) {
 return proto.prototype[prop];
 }
 }
 }
 return thisObj[prop];
}

We also need to change the behavior of the prototype definitions in order for instanceof
to work as we would like:

var multiMop = {};
multiMop.hasInstanceOf = function(thisObj,instance) {
 if (instance.__proto__ instanceof Array) {
 for (var key in instance.__proto__) {
 var prot = instance.__proto__[key];
 if (prot == thisObj) return true;
 }
 return false;
 }
 //Note that instanceof can be used normally inside the method.

 23

 else return (instance instanceof thisObj);
}
Wizard.__metaobject__ = multiMop;
Hero.__metaobject__ = multiMop;
Ally.__metaobject__ = multiMop;
Villain.__metaobject__ = multiMop;

These prototype definitions and the new object behavior have added multiple inheritance
to JavaScript. For an example, we will show a game excerpt about Jason and the
Argonauts. In his quest, Jason meets and later marries Medea. This is a case where we
want a new instance that is both an Ally and Wizard. (This uses Mozilla's __proto__
property to reassign the prototype chain.)

var medea = new Ally("Medea", 4);
medea.__metaobject__ = objMop;
medea.__proto__ = [Ally, Wizard];
medea.spells = {
 old2new: function(ram) { print("'Look, the ram is young now!"); }
};

Both medea instanceof Ally and medea instanceof Wizard will be true. When
move is called she will help Jason. However, we might want to give Jason the option of
leaving Medea. We can account for this action by adding a new method to the jason
instance.

jason.divorce = function(wife) {
 for (var i in wife.__proto__) {
 if (wife.__proto__[i] == Ally) wife.__proto__[i] = Villain;
 }
}

After jason.divorce(medea) is called, medea still refers to the same object. Her wizard
abilities are unchanged, but she is now a Villain instead of an Ally. From that point on,
medea.move() will use the Villain version of the method instead.

This is a key point, and one advantage of a prototype-based object design in general.
Class-based designs are great for defining static behavior, but modifying that behavior on
the fly becomes more challenging. The typical solution for this example would be to
create a new instance of Medea. However, any other modifications to Medea's state
could be lost without careful programming. If Medea happened to be holding the
goldenFleece object in her inventory, it might suddenly disappear.

Prototype-based systems don't need to worry about this. The only change to Medea is her
switch from Ally to Villain. Nothing else is affected.

This type of change occurs frequently in role-playing games, and this solution makes that
easy to model. Being able to compartmentalize and alter behavior at will is not needed

 24

for all problems. However, when it is, prototype chains are an ideal solution. By using
JOMP to create multiple inheritance, we can make this even more powerful.

6 RhinoFaces
The previous examples offer some insights into how these extensions could be useful.
However, to offer a truly practical example of JOMP in action, I’ve built RhinoFaces.
RhinoFaces is a framework built upon JavaServer Faces, but using Rhino JavaScript as
the server-side language.

RhinoFaces will still work without the JavaScript extensions; however, in this case, it
will lose some functionality. This will help to illustrate what improvements are directly
attributable to the new metaprogramming features.

6.1 JavaServer Faces
JavaServer Faces, more often referred to as simply JSF, is a web development framework
from Sun. It is focused on the view portion of the Model View Controller pattern.

JSF was built by many of the core developers of Struts, at one time the de-facto standard
for Java web development. For this reason, JSF was seen as the heir-apparent to Struts.

However, several criticisms arose of the early implementations of JSF, and other
frameworks have gained much ground. RhinoFaces will address a number of these
issues. The principle difference will be a reliance on convention over configuration.
This is the design philosophy behind Ruby on Rails, and this strategy will help to greatly
simplify JSF development.

For any piece that a developer prefers to leave in a more traditional Java/JSF design, he
or she may do so. None of the additional tools or shortcuts needs to be used. They are
optional extensions, and any or all may be ignored.

6.2 Reduced Configuration
Though this feature does not use JOMP, it nonetheless simplifies development greatly.
Missing properties are searched for in the session’s JavaScript environment. A few basic
rules help determine what should be done.

When the session first starts, application.js is loaded. This typically specifies database
properties and models, but any variable or function loaded here will be available to
RhinoFaces.

Method expressions are assumed to be JavaScript property references, unless they specify
an action. For actions, they are expected to be method calls instead.
For any action, the name is assumed to correspond to a page. So, if browse/album is the
action, it will default to the page browse/album.faces.

 25

If a variable is unavailable, and the variable name matches the controller part of the url, it
will look for a JavaScript backing bean of the same name. Furthermore, if that script
contains a constructor with a matching name, it will create a new instance.

For example, cart/viewCart.faces could be the url for customers to see the contents of
their shopping cart. An excerpt of the JSP page might look like this:

<h2>Items in your order</h2>
 <h:dataTable value='#{cart.items}' var='album' border="0"

cellspacing="5" cellpadding="5">
 <h:column>
 <f:facet name='header'>
 ...

The first time this loads, “cart” in “#{cart.items}” is not recognized. RhinoFaces then
loads “cart.js” and finds this constructor:

function Cart() {
 this.items = new ArrayList();
 this.totalPrice = 0;
 if (flash.album) {
 var album = flash.album;
 this.items.add(album);
 this.totalPrice += Number(album.price);
 }
}

It then creates a new cart controller instance by executing the following code:

var cart = new Cart();

On subsequent visits to this page, the cart will already exist in the session’s JavaScript
environment, so no new cart will be created.

All of these defaults may be overridden in the faces-config.xml file. However, the use of
defaults greatly eases the burden on the developer. This is particularly noticeable with
the navigation rules. Here is the configuration for the JavaQuiz example in chapter 3 of
the Core JSF book [7]:

<faces-config>
 <navigation-rule>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/success.jsp</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>again</from-outcome>
 <to-view-id>/again.jsp</to-view-id>

 26

 </navigation-case>
 <navigation-case>
 <from-outcome>failure</from-outcome>
 <to-view-id>/failure.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>done</from-outcome>
 <to-view-id>/done.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>startOver</from-outcome>
 <to-view-id>/index.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>
 <managed-bean>
 <managed-bean-name>quiz</managed-bean-name>
 <managed-bean-class>com.corejsf.QuizBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
</faces-config>

In contrast, the same configuration file for the RhinoFaces version of the application
consists of a single entry:

<faces-config>
 <factory>
 <application-factory>
 edu.sjsu.rhinofaces.RhinoApplicationFactory

 </application-factory>
 </factory>
</faces-config>

Unless the developer wishes to override the default settings, this configuration file will
not need to grow any larger than this for any RhinoFaces application.

6.3 Flash Scope
RhinoFaces includes a “flash” object. This is reset to an empty object after each time that
a page is rendered. As a result, this is a useful way to pass information from page view to
page view without worrying that it won’t get cleaned out.

As an example of how this is used, here is the logout method for MobileMusic:

JukeBox.prototype.logout = function() {
 this.loginText = "login";
 flash.message = "Good-bye, " + this.currentUser.username + ".";
 delete this.currentUser;
 if (__GLOBAL__['cart']) cart.empty();
 return "browse/index";
}

 27

Among other things, this sets a good-bye message that will be displayed by this section of
the JSP page:

<h:outputText value="#{flash.message}"/>

However, if the page is reloaded, this message will disappear.

This feature was implemented by simply resetting the object, but another approach would
have been to use JOMP. Instead of replacing the object, the flash could be set to
automatically delete a property after it had been used. This would have the advantage
that its properties would survive a redirect. However, it also makes the flash more
complicated to use. Therefore, this approach was abandoned.

6.4 Simplified Database Access
One of the major advantages of Rails is the ease of database access. This is done through
ActiveRecord, Rails’ object-relational tool. RhinoFaces will include RhinoRecord,
which will offer many of the same benefits that ActiveRecord offers.

RhinoRecord handles all database access, which improves the security of the application.
Since the web developer does not have to access the database directly, there is no risk of
a SQL injection attack.

This is a fringe benefit though; the main focus of RhinoRecord is simplifying
development. The base RhinoRecord achieves this by following the same conventions as
ActiveRecord. Database table names are assumed to be the plural of the class (for Rails)
or constructor (for RhinoFaces). The object’s properties are taken directly from the
database field names. The only difference in this is that RhinoRecord converts names
with underscores to camel case. For example, first_name becomes firstName.

However, more advanced benefits are only available with JOMP.

6.4.1 Associations
ActiveRecord relies on the user to specify the associations in the class itself. It has a
variety of methods to do this. They are has_one, has_many, belongs_to, and
has_and_belongs_to_many.

RhinoRecord takes a different approach. It only offers the equivalent of has_many and
belongs_to, but instead of forcing the user to specify these, they are created when they
are first needed.

Like ActiveRecord, RhinoRecord relies on certain conventions. First of all, it assumes
that each record has an id column that uniquely identifies it. Secondly, it assumes that
each foreign key refers to the table name. For example, if a table named albums has an
artist_id field, it assumes that this refers to the id column in the artists table.

 28

This is done by intercepting the getting of properties. The first time that a script refers to
album.artist, this method will look for artistId in the object’s properties. If this
does exist, it will load the relevant artist and store it as a property for the album. This
means that future calls to the artist will not need to go through this process. The relevant
part of __metaobject__.get is here:

if (this.hasOwnProperty(propName + 'Id')) {
 var constr = eval(RhinoRecord.capitalize(propName));
 this[propName] = constr.findFirst({id: this[propName+'Id']});
 return this[propName];
 }

This satisfies the belongs_to relationship. As mentioned earlier, only the has_many
relationship is supported of the others. Since we can therefore automatically assume that
the relationship is one to many, we can take some shortcuts.

When album.songs is first referred to, this method will look for a Song constructor. If
found, it will search the songs table for all records with a album_id matching the current
album object:

if (propName.match(/s$/)) {
 var constr = eval(RhinoRecord

.calcConstrNameFromPlural(propName));
 if (constr) {
 var options = {};
 options.params = {};
 options.params[this.tableName.slice(0,

this.tableName.length-1)+'Id'] = this.id;
 this[propName] = constr.findAll(options);
 return this[propName];
 }
 }

This setup is a little less flexible, but it means that there is less of a burden on the
programmer. One benefit of ActiveRecord’s approach is that it is able to pay the
performance cost up front, whereas RhinoRecord pays it when the reference is first
needed.

However, RhinoRecord could easily add methods to explicitly set up these relationships.
The benefit of the RhinoRecord approach is that a developer is not required to do so.

Without these features, here is the code needed to initialize the objects for a music
application.

this.albums = new Array();
this.artists = new Array();
this.songs = Song.findAll({orderByDesc: 'numDownloads'});

 29

var iter = this.songs.iterator();
while (iter.hasNext()) {
 var tempSong = iter.next();
 if (!this.albums[tempSong.albumId]) {
 var album = Album.findFirst({id: tempSong.albumId});
 album.songs = new ArrayList();
 this.albums[tempSong.albumId] = album;

 if (!this.artists[album.artistId]) {
 var artist = Artist.findFirst({id: album.artistId});
 artist.albums = new ArrayList();
 this.artists[album.artistId] = artist;
 }
 album.artist = this.artists[album.artistId];
 album.artist.albums.add(album);
 }
 tempSong.album = this.albums[tempSong.albumId];
 tempSong.album.songs.add(tempSong);
}

With the association logic, this instead becomes:

this.songs = Song.findAll({orderByDesc: 'numDownloads'});

6.4.2 Advanced find methods
One nice feature of ActiveRecord is that it supports more advanced find features. A
programmer could type Album.find_by_title("Surf Cinema"), and ActiveRecord
would convert it to the less intuitive Album.find(:first, :title=>"Surf Cinema").

With JOMP, JavaScript can do this as well. This again uses __metaobject__.get. Here
is the excerpt:

if (propName.match(/^findBy/)) {
 var field = propName.match(/^findBy(.*)$/)[1];
 this[propName] = function (val) {
 var params = {};
 params[field] = val;
 return this.findFirst(params);
 }
 return this[propName];
}

While this does not add any additional functionality, it does allow for more aesthetic
method calls, which arguably make the code more readable.

 30

6.5 MobileMusic
In order to illustrate the advantages of RhinoFaces, I’ve created a music store web
application called “MobileMusic”. I had originally intended to include an interface for
cell phones, but this was later abandoned. Nonetheless, the name stuck.

Figure 1 shows the homepage of the application.

Figure 1: MobileMusic Homepage

6.5.1 Features
MobileMusic was built using RhinoFaces and a MySQL database. The sample music,
artwork, and band information was taken from CDBaby.com, an existing online music
store. This helped to give a realistic feel of how the application would work if it were a
production system.

MobileMusic has public pages for browsing songs, viewing albums, and viewing artists.
It allows customers to listen to excerpts of songs in mp3 format.

Customers can also buy albums and view their order history, though both actions require
the customer to login first. The user does have a shopping cart so that a separate
transaction is not needed for every single item.

 31

There is also a page for viewing orders. This is intended for MobileMusic employees.

6.5.2 Security
One of the principle security risks to any web application is a sloppy web developer. By
giving API designers an easy way to restrict access at a granular level, this risk can be
minimized. We’ve seen this already, but we will illustrate a more concrete example with
MobileMusic.

For MobileMusic, we have a page for employees to view pending orders. This will need
both billing and shipping information. Figure 2 shows this page when viewed by a
MobileMusic administrator.

Figure 2: Admin View of Pending Orders

However, this page is not secure. I have made this page publicly accessible to simulate a
careless developer. The page is not secure, and any customer who discovers it would
then be able to see all orders.

However, the credit card information was protected through JOMP at the object level.
Here is the relevant code:

var orderMO = Order.prototype.__metaobject__;
var oldOrderGet = orderMO.get;
orderMO.get = function(thisObj, prop) {
 if (prop=='creditCardNum' &&

 !jukebox.isAuthorized(thisObj.userId)){
 return "***RESTRICTED***";
 }
 else return oldOrderGet(thisObj, prop);
}

 32

Order.prototype.__metaobject__ = orderMO;

As a result, even though the customer can see a page intended for employees, the most
sensitive information remains secure. This is demonstrated in figure 3.

Figure 3: Non-Admin View of Pending Orders

This is not a very sophisticated protection, but it does illustrate the basic concept. We
can use a metaobject protocol to protect sensitive data at the object level. While this
should not be the only source of security, it can help to give an extra layer of defense in
case other security measures fail.

7 Related Work
Other work has been done to allow the intercepting of properties in JavaScript. In
particular, Mozilla’s implementations have added new features, and Java 6 has an
interesting tool hidden in its version of Rhino. Also, PHP now includes methods to
intercept properties, and it shares many characteristics with JavaScript

7.1 Mozilla JavaScript Getters and Setters
Mozilla has done some work on intercepting properties. Their description of this feature
is in [2].

Unfortunately, their implementation is a little underwhelming. It does not offer any of
the functionality of __metaobject__.get or __metaobject__.set. Furthermore, it
does not even allow you to intercept the setting and getting of existing properties. This
design loses many of the advantages of getters and setters.

 33

The main focus of the change appears to be to allow Firefox JavaScript to interact with
Microsoft specific JavaScript code. While this is a major plus, it does seem that the
designers were too narrowly focused on this one specific issue and missed a golden
opportunity. To be fair, however, a more powerful design might have cost more in terms
of performance. Perhaps that was their primary concern.

However, there is an interesting parallel to CLOS. One of the primary concerns of the
CLOS designers was to smoothly interact with the various Lisp object systems that
preceded it [9]:

The prospective CLOS user community was already using a variety of object-oriented extensions to
Lisp. They were committed to large bodies of existing code, which they needed continue using and
maintaining. … although they differed in surface details, they were all based, at a deeper level, on the
same fundamental approach.

They dealt with this variety of systems through a powerful MOP. In some ways, this is a
similar problem to interacting with the different JS implementations of different
browsers. Even with this limited addition to the language, the Mozilla team has given a
powerful tool to developers to resolve this issue.

Another new feature of interest is the __noSuchMethod__ method. This works just like
Ruby’s method_missing. However, due to the different designs of the language, this is
less powerful. In Ruby, property references are indistinguishable from getting and setting
properties. As a result, method_missing also intercepts missing property references.
This is not the case for Mozilla’s __noSuchMethod__.

7.2 Java 6 JS
Java 6 has added support for scripting frameworks. As part of this, it includes a version
of Mozilla's Rhino. For the most part, this is a more limited implementation. It does not
include support for continuations or e4x, for example. However, there is one interesting,
almost entirely undocumented feature in Sun's implementation.

Sun's Java 6 version of Rhino includes a JSAdapter class [15]. This offers much of the
same functionality as my proposed extensions.

Instead of modifying the behavior of all objects in the language, this approach instead
creates a special object with additional functionality. This object can be used to wrap
other objects. When you attempt to get or set a property for this special object, it will call
its __get__ or __put__ method, if one exists. Here is an example that will restrict access
to the salary field (unless you refer to the emp object directly):

var emp = {name:'Joe Bob Briggs', salary:5000}
emp.__get__ = function(fieldName) {
 if (fieldName == 'salary') {
 throw new Error("Salary is restricted");
 }

 34

 return this[fieldName];
}

var wrapper = new JSAdapter(emp);
print("Reading details for employee '" + wrapper.name + "'.\n");
try {
 print('Salary is ' + wrapper.salary);
}
catch(e) {
 print(e.name + ": " + e.message);
}

The JSAdapter objects also have __has__, __delete__, and __getIds__. They
effectively cover every way that a JavaScript object can be accessed, and almost match
JOMP’s functionality. The only missing piece is JOMP’s hasInstanceOf method.

One disadvantage of this approach is the need for a special wrapper object. While this
minimizes the change to the language, it also makes it more difficult to use this
functionality within an object's constructor.

With this approach, we cannot modify the behavior of an object itself at runtime. It is not
a true MOP. This manner of adding these extensions is very clever. However, it would
be better to adapt the JS Object itself rather than relying on a new, special wrapper object.

Still, JSAdapter deserves credit for introducing a useful feature to the language with a
negligible impact on the language’s design.

7.3 PHP 5 Comparison
JavaScript and PHP have some striking similarities in their basic design. In particular, it
is common in both languages to access properties directly. This is getting to be less true
for PHP, but it is still far from unusual to see code like the following:

echo user->full_name;

In contrast, you never access variables directly in Java or Ruby. It can be done, but is
seen as something close to high treason.

A more important point is that both of these languages will accept new properties for
existing objects. In Java, you cannot add a property to an object if it is not available for
its class. In Ruby, you can do so through the use of singleton classes, but it is a much
more complicated process.

Also, PHP does have the ability to intercept references to properties with its __get and
__set methods. It is not as powerful as what I have proposed; it only catches properties
that do not exist. However, this should still be enough to replicate method_missing.

 35

Unfortunately for PHP developers, functions are not first class citizens in the language.
Function references are never intercepted by __get or __set. And while you can make
anonymous functions in PHP with create_function, these functions cannot be set as
methods. This will fail:

$emp->work = create_function('$beg,$end', 'echo "Work from "
. $beg . " to " . $end;');

$emp->work("9", "5");

The function is set as a property of $emp, but it is only a property. It can't be treated as a
method. So while the above example fails, this will work:

$emp->work = create_function('$beg,$end', 'echo "Work from "
. $beg . " to " . $end;');

$foo = $emp->work;
$foo("9", "5");

In fairness to PHP, it does have a __call method that is called for unrecognized
methods. However, because of its more complicated structure, it needs __get, __set,
and __call to mimic the functionality of Ruby's method_missing. And unlike
JavaScript and Ruby, it has no ability to add methods to an existing object.

By introducing a MOP that can intercept property references for JavaScript objects, we
gain the ability to replicate method_missing, in addition to allowing a wide variety of
other behavior. PHP's similar design nearly gives it the same possibilities, but it lacks the
key element of JavaScript's first class functions.

8 Conclusion
JavaScript has only a few constructs in its language. However, these are very powerful
and well designed. This gives it an elegance more associated with languages like Scheme
than with others in the C family.

The most central construct in JavaScript is the object. Except for the global object and
operators, everything in JavaScript is a property of some other object.

Because of this, we can create a powerful and sophisticated MOP by allowing
programmers to modify the behavior of objects. The prototype-based object system lets
us modify large groups of objects or individual objects with equal ease. The fact that
functions are properties of objects allows us to modify those as well without having to
alter the implementation of functions.

In this project, I have created JOMP as an illustration of this. I have demonstrated a
number of traditional MOP uses, including security, tracing, and introducing multiple

 36

inheritance. I have also shown that intercepting the getting and setting of properties lets
us replicate almost all of the advanced metaprogramming features in Ruby.

Furthermore, as a practical example I have created the RhinoFaces web development
framework, built with JSF, Rhino JavaScript, and JOMP. With the sample MobileMusic
application, I have illustrated how JOMP can improve a developer’s productivity. In
particular, I have demonstrated how JOMP can simplify database access and improve
security.

JavaScript already dominates the client-side of web development. In addition, it is
becoming an increasingly viable contender for the server-side. With these additional
features, it could become an even stronger choice.

 37

References
[1] Black, David. Ruby for Rails. Manning Publications Co. 2006.
[2] Core JavaScript 1.5 Guide: Creating New Objects: Defining Getters and Setters.

(Accessed October 2007).
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Guide:Creating_New_O
bjects:Defining_Getters_and_Setters.

[3] Crockford, Douglas. The JavaScript Programming Language. Yahoo presentation.
(Accessed May 2007). http://yuiblog.com/blog/2007/01/24/video-crockford-tjpl/.

[4] Crockford, Douglas. JSLint: The JavaScript Verifier. (Accessed April 2007).
http://www.jslint.com/lint.html.

[5] Denker, Marcus, Stéphane Ducasse, Andrian Lienhard, Philippe Marschall. Sub-
Method Reflection. Journal of Object Technology, special issue TOOLS Europe
2007, October 2007, vol. 6, no. 9.
http://www.jot.fm/issues/issue_2007_10/paper14/.

[6] ECMA (European Computer Manufacturers Association). ECMAScript Language
Specification. (Accessed August 2007). http://www.ecma-
international.org/publications/standards/Ecma-262.htm.

[7] Geary, David and Cay Horstmann. Core JavaServer Faces, 2nd ed. Prentice Hall.
2007.

[8] Flanagan, David. JavaScript: the Definitive Guide, 5th ed. O'Reilly Media Inc.
2006.

[9] Kiczales, Gregor, Jim des Rivières, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[10] Kidd, Eric. Why Ruby is an Acceptable Lisp. (Accessed April 2007).
http://www.randomhacks.net/articles/2005/12/03/why-ruby-is-an-acceptable-lisp.

[11] Lee, Arthur H. and Joseph L Zachary. Reflections on Metaprogramming. IEEE
Transactions on Software Engineering, November 1995, vol. 21, no. 11.

[12] Matsumoto, Yukihiro. Ruby’s Lisp features. Ruby-talk mailing list archives.
(Accessed May 2007). http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-
talk/179642.

[13] Paepcke, Andreas. User-level Crafting Introducing the CLOS Metaobject Protocol.
(Accessed December 2006).
http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps.

[14] Rivard, Fred. Smalltalk: a Reflective Language. (Accessed November 2006).
http://www2.parc.com/csl/groups/sda/projects/reflection96/docs/rivard/rivard.html.

[15] Sundararajan, A. Self, JavaScript, and JSAdapter. (Accessed October 2007).
http://blogs.sun.com/sundararajan/entry/self_javascript_and_jsadapter.

[16] Tanter, Éric, Noury M. N. Bouraqadi-Saadani, and Jacques Noyé. Reflex – Towards
an Open Reflective Extension of Java. (Accessed December 2006).
http://www.dcc.uchile.cl/~etanter/research/publi/2001/tanterBouraqadiNoye-
reflection2001.pdf.

[17] Tate, Bruce. Beyond Java. O'Reilly Media Inc. 2005.

 38

[18] Thomas, Dave. Programming the World in a Browser - Real Men Don't Do
JavaScript Do They?!. Journal of Object Technology, vol. 6 no. 10 November-
December 2007, pp. 25-29 http://www.jot.fm/issues/issue_2007_10/column3.

[19] Yegge, Steve. Lisp is Not an Acceptable Lisp. (Accessed April 2007). http://steve-
yegge.blogspot.com/2006/04/lisp-is-not-acceptable-lisp.html.

[20] Ungar, Dan and Randall B. Smith. Self: the Power of Simplicity. (Accessed
October 2007). http://www.cs.ucsb.edu/~urs/oocsb/self/papers/self-power.html.

[21] Welch, Ian and Fan Lu. Policy-driven Reflective Enforcement of Security Policies.
Proceedings of the 2006 ACM symposium on Applied computing.

